Some spectral relations
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 561-568
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the zeta function of a second-order differential operator which has a second-order turning point:
$$
Lu=\frac{d^2u}{dx^2}+[\lambda^2q(x)+R(x)]u,
$$
where $q(x)=x^2q_1(x)$, $q_1(x)\ne0$ and $u(0)=u(1)=0$.
We construct an asymptotic series and calculate regularized
traces for the eigenvalues of this operator.
@article{MZM_1975_18_4_a8,
author = {A. A. Stakun},
title = {Some spectral relations},
journal = {Matemati\v{c}eskie zametki},
pages = {561--568},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a8/}
}
A. A. Stakun. Some spectral relations. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a8/