Some spectral relations
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 561-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the zeta function of a second-order differential operator which has a second-order turning point: $$ Lu=\frac{d^2u}{dx^2}+[\lambda^2q(x)+R(x)]u, $$ where $q(x)=x^2q_1(x)$, $q_1(x)\ne0$ and $u(0)=u(1)=0$. We construct an asymptotic series and calculate regularized traces for the eigenvalues of this operator.
@article{MZM_1975_18_4_a8,
     author = {A. A. Stakun},
     title = {Some spectral relations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {561--568},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a8/}
}
TY  - JOUR
AU  - A. A. Stakun
TI  - Some spectral relations
JO  - Matematičeskie zametki
PY  - 1975
SP  - 561
EP  - 568
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a8/
LA  - ru
ID  - MZM_1975_18_4_a8
ER  - 
%0 Journal Article
%A A. A. Stakun
%T Some spectral relations
%J Matematičeskie zametki
%D 1975
%P 561-568
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a8/
%G ru
%F MZM_1975_18_4_a8
A. A. Stakun. Some spectral relations. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a8/