Lebesgue's inequality in a uniform metric and on a set of full measure
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 515-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a continuous periodic function with Fourier sums $S_n(f)$, $E_n(f)=E_n$ be the best approximation to $f$ by trigonometric polynomials of order $n$. The following estimate is proved: $$ ||f-S_n(f)||\leqslant c\sum_{\nu=n}^{2n}\frac{E_\nu}{\nu-n+1}. $$ (Here $c$ is an absolute constant.) This estimate sharpens Lebesgue's classical inequality for “fast” decreasing $E_\nu$. The sharpness of this estimate is proved for an arbitrary class of functions having a given majorant of best approximations. Also investigated is the sharpness of the corresponding estimate for the rate of convergence of a Fourier series almost everywhere.
@article{MZM_1975_18_4_a4,
     author = {K. I. Oskolkov},
     title = {Lebesgue's inequality in a uniform metric and on a set of full measure},
     journal = {Matemati\v{c}eskie zametki},
     pages = {515--526},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a4/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - Lebesgue's inequality in a uniform metric and on a set of full measure
JO  - Matematičeskie zametki
PY  - 1975
SP  - 515
EP  - 526
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a4/
LA  - ru
ID  - MZM_1975_18_4_a4
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T Lebesgue's inequality in a uniform metric and on a set of full measure
%J Matematičeskie zametki
%D 1975
%P 515-526
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a4/
%G ru
%F MZM_1975_18_4_a4
K. I. Oskolkov. Lebesgue's inequality in a uniform metric and on a set of full measure. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 515-526. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a4/