Conditions for the completeness of the system of polynomials
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 507-513.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the space $A_2(K,\gamma)$ of functions which are analytic in the unit disk $K$ and square-summable in $K$ with respect to plane Lebesgue measure $\sigma$ with weight $\gamma=|D|^2$, $D\in A_2(K, 1)$, $D(z)\ne0$, $z\in K$. We establish the inequality $$ \int_K|Dg|^2u\,d\sigma\leqslant\int_ku\,d\sigma, $$ where $g$ represents the distance from $1/D$ to the closure of the polynomials [in the metric of $A_2(K,\gamma)$] and $u$ is any function which is harmonic and nonnegative in $K$. By means of this inequality we obtain sufficient conditions for the completeness of the system of polynomials in $A_2(K,\gamma)$ in terms of membership of certain functions of $D$ in the class $H_2$ (Hardy-2).
@article{MZM_1975_18_4_a3,
     author = {F. S. Lisin},
     title = {Conditions for the completeness of the system of polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {507--513},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a3/}
}
TY  - JOUR
AU  - F. S. Lisin
TI  - Conditions for the completeness of the system of polynomials
JO  - Matematičeskie zametki
PY  - 1975
SP  - 507
EP  - 513
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a3/
LA  - ru
ID  - MZM_1975_18_4_a3
ER  - 
%0 Journal Article
%A F. S. Lisin
%T Conditions for the completeness of the system of polynomials
%J Matematičeskie zametki
%D 1975
%P 507-513
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a3/
%G ru
%F MZM_1975_18_4_a3
F. S. Lisin. Conditions for the completeness of the system of polynomials. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 507-513. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a3/