Criteria for the injectivity of analytic sheaves
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 589-596
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a module $\mathscr{L}$ over the sheaf $\mathscr{O}$ of germs of holomorphic functions on a domain $G$ of $\mathbf{C}^n$ is injective if and only if the following conditions are satisfied; a) $\mathscr{L}$ is flabby; b) for every closed set $S\subset G$ and every point $z\in G$, the stalk $S^{l}_z$ of the sheaf $S^{\mathscr{L}}: U\mapsto\Gamma_S(U:\mathscr{L})$ is an injective $\mathscr{O}_z$-module. It follows in particular that the sheaf of germs of hyperfunctions is injective over the sheaf of germs of analytic functions.
@article{MZM_1975_18_4_a11,
author = {V. D. Golovin},
title = {Criteria for the injectivity of analytic sheaves},
journal = {Matemati\v{c}eskie zametki},
pages = {589--596},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a11/}
}
V. D. Golovin. Criteria for the injectivity of analytic sheaves. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 589-596. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a11/