Criteria for the injectivity of analytic sheaves
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 589-596.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a module $\mathscr{L}$ over the sheaf $\mathscr{O}$ of germs of holomorphic functions on a domain $G$ of $\mathbf{C}^n$ is injective if and only if the following conditions are satisfied; a) $\mathscr{L}$ is flabby; b) for every closed set $S\subset G$ and every point $z\in G$, the stalk $S^{l}_z$ of the sheaf $S^{\mathscr{L}}: U\mapsto\Gamma_S(U:\mathscr{L})$ is an injective $\mathscr{O}_z$-module. It follows in particular that the sheaf of germs of hyperfunctions is injective over the sheaf of germs of analytic functions.
@article{MZM_1975_18_4_a11,
     author = {V. D. Golovin},
     title = {Criteria for the injectivity of analytic sheaves},
     journal = {Matemati\v{c}eskie zametki},
     pages = {589--596},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a11/}
}
TY  - JOUR
AU  - V. D. Golovin
TI  - Criteria for the injectivity of analytic sheaves
JO  - Matematičeskie zametki
PY  - 1975
SP  - 589
EP  - 596
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a11/
LA  - ru
ID  - MZM_1975_18_4_a11
ER  - 
%0 Journal Article
%A V. D. Golovin
%T Criteria for the injectivity of analytic sheaves
%J Matematičeskie zametki
%D 1975
%P 589-596
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a11/
%G ru
%F MZM_1975_18_4_a11
V. D. Golovin. Criteria for the injectivity of analytic sheaves. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 589-596. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a11/