Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 473-488.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $\mathrm{C(Q)}$ of real functions that are continuous on the compact set $\mathrm{Q}$, a finite-dimensional subspace $\mathrm{P}$ will have a uniformly continuous metric projection if and only if $\mathrm{Q}$ is a finite sum of compact sets $\mathrm{Q_i}$, and either $\mathrm{P}$ is on each $\mathrm{Q_i}$ a one-dimensional Chebyshev space, or $\mathrm{x(t)\equiv0\mathrm}$ for any $\mathrm{x}$ belonging to $\mathrm{P}$. The metric projection onto any finite-dimensional subspace of the space $\mathrm{L[a, b]}$ of real integrable functions is not uniformly continuous.
@article{MZM_1975_18_4_a0,
     author = {V. I. Berdyshev},
     title = {Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {473--488},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a0/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 473
EP  - 488
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a0/
LA  - ru
ID  - MZM_1975_18_4_a0
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$
%J Matematičeskie zametki
%D 1975
%P 473-488
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a0/
%G ru
%F MZM_1975_18_4_a0
V. I. Berdyshev. Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 473-488. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a0/