Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 473-488
Voir la notice de l'article provenant de la source Math-Net.Ru
In the space $\mathrm{C(Q)}$ of real functions that are continuous on the compact set $\mathrm{Q}$, a finite-dimensional subspace $\mathrm{P}$ will have a uniformly continuous metric projection if and only if $\mathrm{Q}$ is a finite sum of compact sets $\mathrm{Q_i}$, and either $\mathrm{P}$ is on each $\mathrm{Q_i}$ a one-dimensional Chebyshev space, or $\mathrm{x(t)\equiv0\mathrm}$ for any $\mathrm{x}$ belonging to $\mathrm{P}$. The metric projection onto any finite-dimensional subspace of the space $\mathrm{L[a, b]}$ of real integrable functions is not uniformly continuous.
@article{MZM_1975_18_4_a0,
author = {V. I. Berdyshev},
title = {Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$},
journal = {Matemati\v{c}eskie zametki},
pages = {473--488},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a0/}
}
V. I. Berdyshev. Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 473-488. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a0/