A~bound of the exterior arcs for a~univalent mapping
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 367-378
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the intersection of the circle $|w|=x$ with the image of the disc $|z|\le r$, $0$, under the mapping of a function of the form $f(z)=z+c_2z^2+\dots$ which is univalent analytic in $|z|1$. Earlier I. E. Bazilevich proved that for $x\ge e^{\pi/e}r$ the measure of the above intersection does not exceed the measure of the intersection produced by the function $f^*(z)=\frac z{(1-\eta z)^2}$, $|\eta|=1$.
In this paper I. E. Bazilevich's ideas are used to strengthen some of his results.
@article{MZM_1975_18_3_a5,
author = {Yu. A. Litvinchuk and I. M. Milin},
title = {A~bound of the exterior arcs for a~univalent mapping},
journal = {Matemati\v{c}eskie zametki},
pages = {367--378},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a5/}
}
Yu. A. Litvinchuk; I. M. Milin. A~bound of the exterior arcs for a~univalent mapping. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a5/