A~bound of the exterior arcs for a~univalent mapping
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 367-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the intersection of the circle $|w|=x$ with the image of the disc $|z|\le r$, $0$, under the mapping of a function of the form $f(z)=z+c_2z^2+\dots$ which is univalent analytic in $|z|1$. Earlier I. E. Bazilevich proved that for $x\ge e^{\pi/e}r$ the measure of the above intersection does not exceed the measure of the intersection produced by the function $f^*(z)=\frac z{(1-\eta z)^2}$, $|\eta|=1$. In this paper I. E. Bazilevich's ideas are used to strengthen some of his results.
@article{MZM_1975_18_3_a5,
     author = {Yu. A. Litvinchuk and I. M. Milin},
     title = {A~bound of the exterior arcs for a~univalent mapping},
     journal = {Matemati\v{c}eskie zametki},
     pages = {367--378},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a5/}
}
TY  - JOUR
AU  - Yu. A. Litvinchuk
AU  - I. M. Milin
TI  - A~bound of the exterior arcs for a~univalent mapping
JO  - Matematičeskie zametki
PY  - 1975
SP  - 367
EP  - 378
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a5/
LA  - ru
ID  - MZM_1975_18_3_a5
ER  - 
%0 Journal Article
%A Yu. A. Litvinchuk
%A I. M. Milin
%T A~bound of the exterior arcs for a~univalent mapping
%J Matematičeskie zametki
%D 1975
%P 367-378
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a5/
%G ru
%F MZM_1975_18_3_a5
Yu. A. Litvinchuk; I. M. Milin. A~bound of the exterior arcs for a~univalent mapping. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a5/