The topology of group extensions of C systems
Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 453-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the topological and metric properties of group extensions of C systems. The basic theorem describes the topologically transitive component, the ergodic component, and the K component of a group extension of a C system. It is shown that each of these components is a group sub-bundle of a principal bundle in which the group extension acts. The frame flow on a manifold of negative curvature is seen to be a special case of a group of extension of a C system. It is shown that the space of frames on a compact three-dimensional manifold with negative curvature does not have any group sub-bundles, so that the frame flow on manifolds of this class is topologically transitive, ergodic, and a K system.
@article{MZM_1975_18_3_a14,
     author = {M. I. Brin},
     title = {The topology of group extensions of {C} systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {453--465},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a14/}
}
TY  - JOUR
AU  - M. I. Brin
TI  - The topology of group extensions of C systems
JO  - Matematičeskie zametki
PY  - 1975
SP  - 453
EP  - 465
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a14/
LA  - ru
ID  - MZM_1975_18_3_a14
ER  - 
%0 Journal Article
%A M. I. Brin
%T The topology of group extensions of C systems
%J Matematičeskie zametki
%D 1975
%P 453-465
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a14/
%G ru
%F MZM_1975_18_3_a14
M. I. Brin. The topology of group extensions of C systems. Matematičeskie zametki, Tome 18 (1975) no. 3, pp. 453-465. http://geodesic.mathdoc.fr/item/MZM_1975_18_3_a14/