Identities of semigroup algebras of completely 0-simple semigroups
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 203-212
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H=M^0(G;I,\Delta;P)$ be a Rees semigroup of matrix type with sandwich matrix $P$ over a group $H^0$ with zero. If $F$ is a subgroup of $G$ of finite index and $X$ is a system of representatives of the left cosets of $F$ in $G$, then with the matrix $P$ there is associated in a natural way a matrix $P(F,X)$ over the group $F^0$ with zero. Our main result: the semigroup algebra $K[H]$ of $H$ over a field $K$ of characteristic 0 satisfies an identity if and only if $G$ has an Abelian subgroup $F$ of finite index and, for any $X$, the matrix $P(F,X)$ has finite determinant rank.
@article{MZM_1975_18_2_a5,
author = {O. I. Domanov},
title = {Identities of semigroup algebras of completely 0-simple semigroups},
journal = {Matemati\v{c}eskie zametki},
pages = {203--212},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a5/}
}
O. I. Domanov. Identities of semigroup algebras of completely 0-simple semigroups. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 203-212. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a5/