Identities of semigroup algebras of completely 0-simple semigroups
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 203-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H=M^0(G;I,\Delta;P)$ be a Rees semigroup of matrix type with sandwich matrix $P$ over a group $H^0$ with zero. If $F$ is a subgroup of $G$ of finite index and $X$ is a system of representatives of the left cosets of $F$ in $G$, then with the matrix $P$ there is associated in a natural way a matrix $P(F,X)$ over the group $F^0$ with zero. Our main result: the semigroup algebra $K[H]$ of $H$ over a field $K$ of characteristic 0 satisfies an identity if and only if $G$ has an Abelian subgroup $F$ of finite index and, for any $X$, the matrix $P(F,X)$ has finite determinant rank.
@article{MZM_1975_18_2_a5,
     author = {O. I. Domanov},
     title = {Identities of semigroup algebras of completely 0-simple semigroups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {203--212},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a5/}
}
TY  - JOUR
AU  - O. I. Domanov
TI  - Identities of semigroup algebras of completely 0-simple semigroups
JO  - Matematičeskie zametki
PY  - 1975
SP  - 203
EP  - 212
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a5/
LA  - ru
ID  - MZM_1975_18_2_a5
ER  - 
%0 Journal Article
%A O. I. Domanov
%T Identities of semigroup algebras of completely 0-simple semigroups
%J Matematičeskie zametki
%D 1975
%P 203-212
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a5/
%G ru
%F MZM_1975_18_2_a5
O. I. Domanov. Identities of semigroup algebras of completely 0-simple semigroups. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 203-212. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a5/