Divergence of interpolation processes on sets of the second category
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 179-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

$C([0,1])$ is the space of real continuous functions $f(x)$ on $[0,1]$ and $\omega(\delta)$ is a majorant of the modulus of continuity $\omega(f,\delta)$, satisfying the condition $\varlimsup\limits_{n\to\infty}\omega(1/n)\ln n=\infty$. A solution is given to a problem of S. B. Stechkin: for any matrix $\mathfrak M$ of interpolation points there exists an $f(x)\in C([0,1])$, $\omega(f,\delta)=o\{\omega(\delta)\}$ whose Lagrange interpolation process diverges on a set $\mathscr E$ of second category on $[0,1]$.
@article{MZM_1975_18_2_a2,
     author = {Al. A. Privalov},
     title = {Divergence of interpolation processes on sets of the second category},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--183},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a2/}
}
TY  - JOUR
AU  - Al. A. Privalov
TI  - Divergence of interpolation processes on sets of the second category
JO  - Matematičeskie zametki
PY  - 1975
SP  - 179
EP  - 183
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a2/
LA  - ru
ID  - MZM_1975_18_2_a2
ER  - 
%0 Journal Article
%A Al. A. Privalov
%T Divergence of interpolation processes on sets of the second category
%J Matematičeskie zametki
%D 1975
%P 179-183
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a2/
%G ru
%F MZM_1975_18_2_a2
Al. A. Privalov. Divergence of interpolation processes on sets of the second category. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 179-183. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a2/