Divergence of interpolation processes on sets of the second category
Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 179-183
Cet article a éte moissonné depuis la source Math-Net.Ru
$C([0,1])$ is the space of real continuous functions $f(x)$ on $[0,1]$ and $\omega(\delta)$ is a majorant of the modulus of continuity $\omega(f,\delta)$, satisfying the condition $\varlimsup\limits_{n\to\infty}\omega(1/n)\ln n=\infty$. A solution is given to a problem of S. B. Stechkin: for any matrix $\mathfrak M$ of interpolation points there exists an $f(x)\in C([0,1])$, $\omega(f,\delta)=o\{\omega(\delta)\}$ whose Lagrange interpolation process diverges on a set $\mathscr E$ of second category on $[0,1]$.
@article{MZM_1975_18_2_a2,
author = {Al. A. Privalov},
title = {Divergence of interpolation processes on sets of the second category},
journal = {Matemati\v{c}eskie zametki},
pages = {179--183},
year = {1975},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a2/}
}
Al. A. Privalov. Divergence of interpolation processes on sets of the second category. Matematičeskie zametki, Tome 18 (1975) no. 2, pp. 179-183. http://geodesic.mathdoc.fr/item/MZM_1975_18_2_a2/