Separating diffeomorphisms of the torus
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

There exists a diffeomorphism on the $n$-dimensional torus $T^n$ which is conjugate with a hyperbolic linear automorphism, but is not an Anosov diffeomorphism. A diffeomorphism $f:T^n\to T^n$ has such a property if $f$ is separating and belongs to the $C_0$ closure of the Anosov diffeomorphisms.
@article{MZM_1975_18_1_a5,
     author = {A. A. Gura},
     title = {Separating diffeomorphisms of the torus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a5/}
}
TY  - JOUR
AU  - A. A. Gura
TI  - Separating diffeomorphisms of the torus
JO  - Matematičeskie zametki
PY  - 1975
SP  - 41
EP  - 49
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a5/
LA  - ru
ID  - MZM_1975_18_1_a5
ER  - 
%0 Journal Article
%A A. A. Gura
%T Separating diffeomorphisms of the torus
%J Matematičeskie zametki
%D 1975
%P 41-49
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a5/
%G ru
%F MZM_1975_18_1_a5
A. A. Gura. Separating diffeomorphisms of the torus. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 41-49. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a5/