Separating diffeomorphisms of the torus
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 41-49
Voir la notice de l'article provenant de la source Math-Net.Ru
There exists a diffeomorphism on the $n$-dimensional torus $T^n$ which is conjugate with a hyperbolic linear automorphism, but is not an Anosov diffeomorphism. A diffeomorphism $f:T^n\to T^n$ has such a property if $f$ is separating and belongs to the $C_0$ closure of the Anosov diffeomorphisms.
@article{MZM_1975_18_1_a5,
author = {A. A. Gura},
title = {Separating diffeomorphisms of the torus},
journal = {Matemati\v{c}eskie zametki},
pages = {41--49},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a5/}
}
A. A. Gura. Separating diffeomorphisms of the torus. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 41-49. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a5/