A two-dimensional additive problem with an increasing number of terms
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 19-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper there is established an asymptotic formula for the number of simultaneous representations of two numbers as sums of an increasing number of terms involving a power function, i.e., an asymptotic (as $n\to\infty$) formula is found for the number of solutions in integers $x_i$, $0\le x_i\le p$, of the following system of diophantine equations: $$ \begin{cases} x_1+x_2+\dots+x_n=N_1,\\ x_1^2+x_2^2+\dots+x_n^2=N_2. \end{cases} $$ The analysis is carried out as in the proof of a local limit theorem of probability theory and involves estimates of Weyl sums.
@article{MZM_1975_18_1_a2,
     author = {Sh. A. Ismatullaev},
     title = {A~two-dimensional additive problem with an increasing number of terms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--25},
     year = {1975},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a2/}
}
TY  - JOUR
AU  - Sh. A. Ismatullaev
TI  - A two-dimensional additive problem with an increasing number of terms
JO  - Matematičeskie zametki
PY  - 1975
SP  - 19
EP  - 25
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a2/
LA  - ru
ID  - MZM_1975_18_1_a2
ER  - 
%0 Journal Article
%A Sh. A. Ismatullaev
%T A two-dimensional additive problem with an increasing number of terms
%J Matematičeskie zametki
%D 1975
%P 19-25
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a2/
%G ru
%F MZM_1975_18_1_a2
Sh. A. Ismatullaev. A two-dimensional additive problem with an increasing number of terms. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 19-25. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a2/