A~two-dimensional additive problem with an increasing number of terms
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 19-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper there is established an asymptotic formula for the number of simultaneous representations of two numbers as sums of an increasing number of terms involving a power function, i.e., an asymptotic (as $n\to\infty$) formula is found for the number of solutions in integers $x_i$, $0\le x_i\le p$, of the following system of diophantine equations: $$ \begin{cases} x_1+x_2+\dots+x_n=N_1,\\ x_1^2+x_2^2+\dots+x_n^2=N_2. \end{cases} $$ The analysis is carried out as in the proof of a local limit theorem of probability theory and involves estimates of Weyl sums.
@article{MZM_1975_18_1_a2,
     author = {Sh. A. Ismatullaev},
     title = {A~two-dimensional additive problem with an increasing number of terms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--25},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a2/}
}
TY  - JOUR
AU  - Sh. A. Ismatullaev
TI  - A~two-dimensional additive problem with an increasing number of terms
JO  - Matematičeskie zametki
PY  - 1975
SP  - 19
EP  - 25
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a2/
LA  - ru
ID  - MZM_1975_18_1_a2
ER  - 
%0 Journal Article
%A Sh. A. Ismatullaev
%T A~two-dimensional additive problem with an increasing number of terms
%J Matematičeskie zametki
%D 1975
%P 19-25
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a2/
%G ru
%F MZM_1975_18_1_a2
Sh. A. Ismatullaev. A~two-dimensional additive problem with an increasing number of terms. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 19-25. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a2/