Uncomplemented uniform algebras
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 91-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a closed subalgebra of the algebra of all complex-valued continuous functions on a compact space $X$, and suppose $A$ contains the constant functions and separates points of $X$; let $I$ be a closed ideal of $A$ such that for some linear multiplicative functional $\varphi$ on $A$ we have the relation $0\|\varphi|_I\|1$ (for the existence of such an ideal it is sufficient that in the maximal ideal space of the algebra $A$ there exists a Gleason part consisting of at least two points). Then the Banach space $A^{**}$ is not injective [in particular, $A$ is not a complemented subspace of $C(X$)].
@article{MZM_1975_18_1_a11,
     author = {S. V. Kislyakov},
     title = {Uncomplemented uniform algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a11/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - Uncomplemented uniform algebras
JO  - Matematičeskie zametki
PY  - 1975
SP  - 91
EP  - 96
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a11/
LA  - ru
ID  - MZM_1975_18_1_a11
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T Uncomplemented uniform algebras
%J Matematičeskie zametki
%D 1975
%P 91-96
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a11/
%G ru
%F MZM_1975_18_1_a11
S. V. Kislyakov. Uncomplemented uniform algebras. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a11/