Approximation of integrable functions by linear methods almost everywhere
Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 77-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that $2\pi$ periodic functions whose $(r-1)$-th derivatives have bounded variation $(r>0)$ can be approximated by de La Vallée-Poussin $\sigma_{n,m}(an\le m=m(n)\le An, 0$ at almost all points with a rate $o(n^{--r})$. For functions belonging to the class $\operatorname{Lip}(\alpha,L)(0\alpha1)$, any natural $N$, and a positive $\varepsilon>0$, we have almost everywhere $$ |f(x)-\sigma_{n,m}(f;x)|\le c(f,x)n^{-\alpha}\ln n\dots\ln_N^{1+\varepsilon}n, $$ where $\ln_kx=\underbrace{\ln\dots\ln x}_k(k=1,2,\dots)$. For any triangular method of summation $T$ with bounded coefficients we construct functions belonging to $\operatorname{Lip}(\alpha,L)(0\alpha1)$ and such that almost everywhere, $$ \varlimsup_{n\to\infty}|f(x)-\tau_n(f;x)|n^\alpha(\ln n\dots\ln_Nn)^{-\alpha}=\infty, $$ where the $\tau_n(f;x)$ are the means of the method $T$.
@article{MZM_1975_18_1_a10,
     author = {T. V. Radoslavova},
     title = {Approximation of integrable functions by linear methods almost everywhere},
     journal = {Matemati\v{c}eskie zametki},
     pages = {77--90},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a10/}
}
TY  - JOUR
AU  - T. V. Radoslavova
TI  - Approximation of integrable functions by linear methods almost everywhere
JO  - Matematičeskie zametki
PY  - 1975
SP  - 77
EP  - 90
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a10/
LA  - ru
ID  - MZM_1975_18_1_a10
ER  - 
%0 Journal Article
%A T. V. Radoslavova
%T Approximation of integrable functions by linear methods almost everywhere
%J Matematičeskie zametki
%D 1975
%P 77-90
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a10/
%G ru
%F MZM_1975_18_1_a10
T. V. Radoslavova. Approximation of integrable functions by linear methods almost everywhere. Matematičeskie zametki, Tome 18 (1975) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/MZM_1975_18_1_a10/