Interpolation spaces between $(L_1^{w_0},L_1^{w_1})$ and $(L_1,L_\infty)$
Matematičeskie zametki, Tome 17 (1975) no. 5, pp. 727-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A_0,A_1$ be a pair of normed spaces, having the property that the difference $K(x,t;A_0,A_1)-K(x,s;A_0,A_1)$ regarded as a function of $x\in A_0+A_1$ is a seminorm for $t>s$ (here $K$ is the Oklander–Peetre functional). All the pairs $A,L$ of normed spaces, such that, if a linear operator is bounded from $A_0$ into $L_1$ and from $A_1$ into $L_\infty$, then it is bounded from $A$ into $L$, are characterized in the following article.
@article{MZM_1975_17_5_a5,
     author = {V. I. Dmitriev},
     title = {Interpolation spaces between $(L_1^{w_0},L_1^{w_1})$ and $(L_1,L_\infty)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {727--736},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a5/}
}
TY  - JOUR
AU  - V. I. Dmitriev
TI  - Interpolation spaces between $(L_1^{w_0},L_1^{w_1})$ and $(L_1,L_\infty)$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 727
EP  - 736
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a5/
LA  - ru
ID  - MZM_1975_17_5_a5
ER  - 
%0 Journal Article
%A V. I. Dmitriev
%T Interpolation spaces between $(L_1^{w_0},L_1^{w_1})$ and $(L_1,L_\infty)$
%J Matematičeskie zametki
%D 1975
%P 727-736
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a5/
%G ru
%F MZM_1975_17_5_a5
V. I. Dmitriev. Interpolation spaces between $(L_1^{w_0},L_1^{w_1})$ and $(L_1,L_\infty)$. Matematičeskie zametki, Tome 17 (1975) no. 5, pp. 727-736. http://geodesic.mathdoc.fr/item/MZM_1975_17_5_a5/