Generalized valences
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 433-442.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have established that $V(S_p,q;G)$, namely, the collection of all those edges of an arbitrary $n$-vertex hypergraph $G$, whose intersections with set $S_p$, $p$ vertices, has a cardinality $q$, satisfies certain identity relations; in particular, if $v(S_p,q;G)=|V(S_p,q;G)|$, then $$ v(S_p,q;G)=\sum_{i\ge0}(-1)^iC_{q+1}^q\sum_{S_{q+i}\subset S_p}v(S_{q+i},q+i;G). $$ As applications we derive two new combinatorial identities.
@article{MZM_1975_17_3_a9,
     author = {B. S. Stechkin},
     title = {Generalized valences},
     journal = {Matemati\v{c}eskie zametki},
     pages = {433--442},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a9/}
}
TY  - JOUR
AU  - B. S. Stechkin
TI  - Generalized valences
JO  - Matematičeskie zametki
PY  - 1975
SP  - 433
EP  - 442
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a9/
LA  - ru
ID  - MZM_1975_17_3_a9
ER  - 
%0 Journal Article
%A B. S. Stechkin
%T Generalized valences
%J Matematičeskie zametki
%D 1975
%P 433-442
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a9/
%G ru
%F MZM_1975_17_3_a9
B. S. Stechkin. Generalized valences. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 433-442. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a9/