Convex antiproximal sets in spaces $c_0$ and $c$
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 449-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the note we prove that in a Banach space c there exists a closed bounded symmetric convex division ring $V_1$ such that for any $x\in c\setminus V_1$, $P_{V_1}(x)=\emptyset$ where $P_{V_1}$ is the metric projection onto $V_1$.
@article{MZM_1975_17_3_a11,
     author = {S. Kobzash},
     title = {Convex antiproximal sets in spaces $c_0$ and $c$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {449--457},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a11/}
}
TY  - JOUR
AU  - S. Kobzash
TI  - Convex antiproximal sets in spaces $c_0$ and $c$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 449
EP  - 457
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a11/
LA  - ru
ID  - MZM_1975_17_3_a11
ER  - 
%0 Journal Article
%A S. Kobzash
%T Convex antiproximal sets in spaces $c_0$ and $c$
%J Matematičeskie zametki
%D 1975
%P 449-457
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a11/
%G ru
%F MZM_1975_17_3_a11
S. Kobzash. Convex antiproximal sets in spaces $c_0$ and $c$. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 449-457. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a11/