Convex antiproximal sets in spaces $c_0$ and $c$
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 449-457
Cet article a éte moissonné depuis la source Math-Net.Ru
In the note we prove that in a Banach space c there exists a closed bounded symmetric convex division ring $V_1$ such that for any $x\in c\setminus V_1$, $P_{V_1}(x)=\emptyset$ where $P_{V_1}$ is the metric projection onto $V_1$.
@article{MZM_1975_17_3_a11,
author = {S. Kobzash},
title = {Convex antiproximal sets in spaces $c_0$ and $c$},
journal = {Matemati\v{c}eskie zametki},
pages = {449--457},
year = {1975},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a11/}
}
S. Kobzash. Convex antiproximal sets in spaces $c_0$ and $c$. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 449-457. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a11/