Poincaré series
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 245-254
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $N_\alpha$ denote the number of solutions to the congruence $F(x_i,\dots,x_m)\equiv\pmod{p^\alpha}$ for a polynomial $F(x_i,\dots,x_m)$ with integral $p$-adic coefficients. We examine the series $\varphi(t)=\sum_{\alpha=0}^\infty N_\alpha t^\alpha$ called the Poincaré series for the polynomial $F$. In this work we prove the rationality of the series $\varphi(t)$ for a class of isometrically equivalent polynomials of $m$ variables, $m\ge2$, containing the sum of two forms $\varphi_n(x,y)+\varphi_{n+1}(x,y)$ respectively of degrees $n$ and $n+1$, $n\ge2$. In particular the Poincaré series for any third degree polynomial $F_3(x,y)$ (over the set of unknowns) with integral $p$-adic coefficients is a rational function of $t$.
@article{MZM_1975_17_2_a6,
author = {G. I. Gusev},
title = {Poincar\'e series},
journal = {Matemati\v{c}eskie zametki},
pages = {245--254},
year = {1975},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a6/}
}
G. I. Gusev. Poincaré series. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 245-254. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a6/