Poincar\'e series
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 245-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N_\alpha$ denote the number of solutions to the congruence $F(x_i,\dots,x_m)\equiv\pmod{p^\alpha}$ for a polynomial $F(x_i,\dots,x_m)$ with integral $p$-adic coefficients. We examine the series $\varphi(t)=\sum_{\alpha=0}^\infty N_\alpha t^\alpha$ called the Poincaré series for the polynomial $F$. In this work we prove the rationality of the series $\varphi(t)$ for a class of isometrically equivalent polynomials of $m$ variables, $m\ge2$, containing the sum of two forms $\varphi_n(x,y)+\varphi_{n+1}(x,y)$ respectively of degrees $n$ and $n+1$, $n\ge2$. In particular the Poincaré series for any third degree polynomial $F_3(x,y)$ (over the set of unknowns) with integral $p$-adic coefficients is a rational function of $t$.
@article{MZM_1975_17_2_a6,
     author = {G. I. Gusev},
     title = {Poincar\'e series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {245--254},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a6/}
}
TY  - JOUR
AU  - G. I. Gusev
TI  - Poincar\'e series
JO  - Matematičeskie zametki
PY  - 1975
SP  - 245
EP  - 254
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a6/
LA  - ru
ID  - MZM_1975_17_2_a6
ER  - 
%0 Journal Article
%A G. I. Gusev
%T Poincar\'e series
%J Matematičeskie zametki
%D 1975
%P 245-254
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a6/
%G ru
%F MZM_1975_17_2_a6
G. I. Gusev. Poincar\'e series. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 245-254. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a6/