On summability with a~weight of a~solution of the Sturm-Liouville equation
Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 969-980
Voir la notice de l'article provenant de la source Math-Net.Ru
We study problems of summability with a weight of a solution of the Sturm–Liouville equation
$$
-y'+q(x)y=f,\quad x\in J=(-\infty,\infty).
$$
with bounded potential $q(x)$, satisfying the conditions
\begin{gather*}
\inf_{x\in J}q(x)\ge-\mu+1,\quad\sup_{|x-y|\le2}\frac{q(x)+\mu}{q(y)+\mu}+\infty,
\\
\sup_{|x-y|\le2}\{|x-y|^{-\alpha}|q(x)|^{-\alpha}\exp(-r|x-y|\sqrt{q(x)+\lambda})|q(x)-q(y)|\}+\infty,
\end{gather*}
where $\alpha\in(0,1]$, $r\in[0,1)$, $2-2a+\alpha>0$, $a\ge0$, $\mu\ge0$.
Our main result is the following: let $q(x)$ satisfy the conditions given above and let l$(x)$ be a nonnegative function such that
$$
C(|x|^C+1)\ge l(x)\ge C^{-1}(|x|^C+1)^{-1},\quad\sup_{|x-y|\le2}\frac{l(x)}{l(y)}+\infty,
$$
then if $-y''+q(x)y=f$ и $y(x)l(x),~f(x)l(x)\in L_p(J)$ ($1\le p\infty$), it follows that
\begin{gather*}
y''l(x),\quad q(x)l(x)y(x),
\\
(q(x)+\mu)^{1/2}y'(x)l(x)\in L_p(J).
\end{gather*}
@article{MZM_1974_16_6_a13,
author = {M. O. Otelbaev},
title = {On summability with a~weight of a~solution of the {Sturm-Liouville} equation},
journal = {Matemati\v{c}eskie zametki},
pages = {969--980},
publisher = {mathdoc},
volume = {16},
number = {6},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a13/}
}
M. O. Otelbaev. On summability with a~weight of a~solution of the Sturm-Liouville equation. Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 969-980. http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a13/