Convergence of sequences of Riemann sums
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 645-656.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Riemann sums of the form $$ M_n(f,x)=\frac1n\sum_{k=0}^{n-1}f\Bigl(x+\frac kn\Bigr);\quad R_n(f,x)\frac1n\sum_{k=0}^{n-1}f\Bigl(\frac{x+k}n\Bigr) $$ for measurable functions with period 1. We answer in the affirmative the question concerning the possibility of convergence almost everywhere on $(0,1)$ of these and other sums to different limits along different subsequences. For functions monotonic on the interval $(0,1)$ we investigate how slowly the sequences of subscripts can increase along which the convergence to different limits takes place [in the sense of convergence for all $x\in(0,1)$ for the sums $R_n(f,x)$ and in the sense of convergence in measure on $(0,1)$ for the sums $M_n(f,x)$].
@article{MZM_1974_16_4_a17,
     author = {A. Yu. Petrovich},
     title = {Convergence of sequences of {Riemann} sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {645--656},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a17/}
}
TY  - JOUR
AU  - A. Yu. Petrovich
TI  - Convergence of sequences of Riemann sums
JO  - Matematičeskie zametki
PY  - 1974
SP  - 645
EP  - 656
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a17/
LA  - ru
ID  - MZM_1974_16_4_a17
ER  - 
%0 Journal Article
%A A. Yu. Petrovich
%T Convergence of sequences of Riemann sums
%J Matematičeskie zametki
%D 1974
%P 645-656
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a17/
%G ru
%F MZM_1974_16_4_a17
A. Yu. Petrovich. Convergence of sequences of Riemann sums. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 645-656. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a17/