Convergence of sequences of Riemann sums
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 645-656
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Riemann sums of the form
$$
M_n(f,x)=\frac1n\sum_{k=0}^{n-1}f\Bigl(x+\frac kn\Bigr);\quad R_n(f,x)\frac1n\sum_{k=0}^{n-1}f\Bigl(\frac{x+k}n\Bigr)
$$
for measurable functions with period 1. We answer in the affirmative the question concerning the possibility of convergence almost everywhere on $(0,1)$ of these and other sums to different limits along different subsequences. For functions monotonic on the interval $(0,1)$ we investigate how slowly the sequences of subscripts can increase along which the convergence to different limits takes place [in the sense of convergence for all $x\in(0,1)$ for the sums $R_n(f,x)$ and in the sense of convergence in measure on $(0,1)$ for the sums $M_n(f,x)$].
@article{MZM_1974_16_4_a17,
author = {A. Yu. Petrovich},
title = {Convergence of sequences of {Riemann} sums},
journal = {Matemati\v{c}eskie zametki},
pages = {645--656},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a17/}
}
A. Yu. Petrovich. Convergence of sequences of Riemann sums. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 645-656. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a17/