Surfaces of fundamental type with geometric genus 2 and $c_1^2|X|=1$
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 623-632.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1] E. Bombieri showed that $|4K|$ always yields a holomorphic map for surfaces of fundamental type and that $|3K|$ does not yield a holomorphic map for such surfaces with $p_g=2$ and $c_1^2|X|=1$. In this note we prove the existence of such surfaces and give a complete description of them. We prove that Torelli's local theorem is true, i.e., that the mapping of periods from the space of moduli into the space of periods is étale; we calculate the number of moduli and we show that the space of moduli is nonsingular.
@article{MZM_1974_16_4_a15,
     author = {A. N. Todorov},
     title = {Surfaces of fundamental type with geometric genus 2 and $c_1^2|X|=1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {623--632},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a15/}
}
TY  - JOUR
AU  - A. N. Todorov
TI  - Surfaces of fundamental type with geometric genus 2 and $c_1^2|X|=1$
JO  - Matematičeskie zametki
PY  - 1974
SP  - 623
EP  - 632
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a15/
LA  - ru
ID  - MZM_1974_16_4_a15
ER  - 
%0 Journal Article
%A A. N. Todorov
%T Surfaces of fundamental type with geometric genus 2 and $c_1^2|X|=1$
%J Matematičeskie zametki
%D 1974
%P 623-632
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a15/
%G ru
%F MZM_1974_16_4_a15
A. N. Todorov. Surfaces of fundamental type with geometric genus 2 and $c_1^2|X|=1$. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 623-632. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a15/