On superpositions of continuous functions
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 517-522
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that if $\Phi$ is an arbitrary countable set of continuous functions of $n$ variables, then there exists a continuous, and even infinitely smooth, function $\psi(x_1,\dots,x_n)$ such that $\psi(x_1,\dots,x_n)\not\equiv g[\varphi(f_1(x_1),\dots,f_n(x_n))]$ for any function $\varphi$ from $\Phi$ and arbitrary continuous functions $g$ and $f_i$, depending on a single variable.
@article{MZM_1974_16_4_a1,
author = {A. A. Agrachev},
title = {On superpositions of continuous functions},
journal = {Matemati\v{c}eskie zametki},
pages = {517--522},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a1/}
}
A. A. Agrachev. On superpositions of continuous functions. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 517-522. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a1/