On superpositions of continuous functions
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 517-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $\Phi$ is an arbitrary countable set of continuous functions of $n$ variables, then there exists a continuous, and even infinitely smooth, function $\psi(x_1,\dots,x_n)$ such that $\psi(x_1,\dots,x_n)\not\equiv g[\varphi(f_1(x_1),\dots,f_n(x_n))]$ for any function $\varphi$ from $\Phi$ and arbitrary continuous functions $g$ and $f_i$, depending on a single variable.
@article{MZM_1974_16_4_a1,
     author = {A. A. Agrachev},
     title = {On superpositions of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--522},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a1/}
}
TY  - JOUR
AU  - A. A. Agrachev
TI  - On superpositions of continuous functions
JO  - Matematičeskie zametki
PY  - 1974
SP  - 517
EP  - 522
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a1/
LA  - ru
ID  - MZM_1974_16_4_a1
ER  - 
%0 Journal Article
%A A. A. Agrachev
%T On superpositions of continuous functions
%J Matematičeskie zametki
%D 1974
%P 517-522
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a1/
%G ru
%F MZM_1974_16_4_a1
A. A. Agrachev. On superpositions of continuous functions. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 517-522. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a1/