Definability in algebraically closed groups
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 375-380
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $K$ be an abstract class of groups such that a countable group $U$ exists possessing the following properties: 1) an arbitrary finitely generated subgroup of $U$ belongs to $K$; 2) an arbitrary finitely generated subgroup from $K$ is imbedded in $U$; 3) a recursive representaion of the group $U$ exists with a solvable word identity problem. Then for arbitrary $n\ge1$ there exists $\exists\forall$-equation $\Psi_n(v_0,\dots,v_{n-1})$ such that for an arbitrary algebraically closed group $G$ and for arbitrary $x_0,\dots,x_{n-1}\in G$ $$ (x_0,\dots,x_{n-1})\in K\Leftrightarrow G\vDash\Psi_N(x_0,\dots,x_{n-1}). $$ Classes of finite free nilpotent groups satisfy the conditions of the theorem.
@article{MZM_1974_16_3_a2,
author = {O. V. Belegradek},
title = {Definability in algebraically closed groups},
journal = {Matemati\v{c}eskie zametki},
pages = {375--380},
year = {1974},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a2/}
}
O. V. Belegradek. Definability in algebraically closed groups. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 375-380. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a2/