Cancellation law and attainable classes of linear $\Omega$-algebras
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 467-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the aid of mixed linear $\Omega$-algebras we prove a theorem to the effect that the cancellation law is satisfied in a groupoid of subvarieties of a variety of $\Omega$-algebras linear over a field and given by identities of zero order. We show that in some varieties of $\Omega$-algebras linear over an infinite ring of principal ideals there are no nontrivial finitely attainable subvarieties. As examples of such varieties we cite the varieties of all $\Omega$-rings, of all rings, of commutative or anticommutative rings ($\Omega$-rings), of Lie rings, et al. In the case of anticommutative rings ($\Omega$-rings) this property holds for $\Omega$-algebras, linear over an arbitrary integral domain without stable ideals.
@article{MZM_1974_16_3_a15,
     author = {M. S. Burgin},
     title = {Cancellation law and attainable classes of linear $\Omega$-algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {467--478},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a15/}
}
TY  - JOUR
AU  - M. S. Burgin
TI  - Cancellation law and attainable classes of linear $\Omega$-algebras
JO  - Matematičeskie zametki
PY  - 1974
SP  - 467
EP  - 478
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a15/
LA  - ru
ID  - MZM_1974_16_3_a15
ER  - 
%0 Journal Article
%A M. S. Burgin
%T Cancellation law and attainable classes of linear $\Omega$-algebras
%J Matematičeskie zametki
%D 1974
%P 467-478
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a15/
%G ru
%F MZM_1974_16_3_a15
M. S. Burgin. Cancellation law and attainable classes of linear $\Omega$-algebras. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 467-478. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a15/