An inequality for a functional on aging distribution functions
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 461-466
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove an inequality for a functional on aging distribution functions $F(t)$, which makes it possible to obtain inequalities for $m_r=\int_0^\infty t^r\,dF(t)$. We show that if $\bigl[\frac{m_r}{r!}\bigr]^{r+1}=\bigl[{m_{r+1}}{(r+1)!}\bigr]^r$ for some $r\ge1$, then $F(t)=1-e^{-\lambda t}$; in addition we give upper and lower bounds for the integral $\int_0^\infty e^{-st}[1-F(t)]\,dt$ expressed in terms of $m_1$ and $m_2$.
@article{MZM_1974_16_3_a14,
author = {O. P. Vinogradov},
title = {An inequality for a~functional on aging distribution functions},
journal = {Matemati\v{c}eskie zametki},
pages = {461--466},
year = {1974},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a14/}
}
O. P. Vinogradov. An inequality for a functional on aging distribution functions. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 461-466. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a14/