The product of linear nonhomogeneous forms
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 365-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for an arbitrary unimodular lattice $\Lambda$ of dimension $n$ and an arbitrary point $C=(c_1,c_2,\dots,c_n)\in R^n$ a point $Y=(y_1,y_2,\dots,y_n)\in\Lambda$ can be found and also a number h, satisfying the condition $1\le h\le2^{-n/2}\theta^{-1}+1$ ($0\theta\le2^{-n/2}$), such that the inequality $$ \prod_{i=1}^n|y_i+hc_i|\theta $$ will be satisfied.
@article{MZM_1974_16_3_a1,
     author = {Kh. N. Narzullaev},
     title = {The product of linear nonhomogeneous forms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {365--374},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a1/}
}
TY  - JOUR
AU  - Kh. N. Narzullaev
TI  - The product of linear nonhomogeneous forms
JO  - Matematičeskie zametki
PY  - 1974
SP  - 365
EP  - 374
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a1/
LA  - ru
ID  - MZM_1974_16_3_a1
ER  - 
%0 Journal Article
%A Kh. N. Narzullaev
%T The product of linear nonhomogeneous forms
%J Matematičeskie zametki
%D 1974
%P 365-374
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a1/
%G ru
%F MZM_1974_16_3_a1
Kh. N. Narzullaev. The product of linear nonhomogeneous forms. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 365-374. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a1/