Noneffectiveness of a~class of regular matrices
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 361-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if a sequence $\{\varepsilon_n\}$ is such that $\varepsilon_1>\varepsilon_2\ge\varepsilon_3\ge\dots$, $\sum_{n=1}^\infty\varepsilon_n=1$, then for any bounded sequence $\{S_n\}$ the equation $\lim\limits_{n\to\infty}\sum_{k=1}^n\varepsilon_{n+1-k}S_k=S$ implies the equation $\lim\limits_{n\to\infty}S_n=S$. This theorem generalizes a theorem of N. A. Davydov [2].
@article{MZM_1974_16_3_a0,
     author = {G. A. Mikhalin},
     title = {Noneffectiveness of a~class of regular matrices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {361--364},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a0/}
}
TY  - JOUR
AU  - G. A. Mikhalin
TI  - Noneffectiveness of a~class of regular matrices
JO  - Matematičeskie zametki
PY  - 1974
SP  - 361
EP  - 364
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a0/
LA  - ru
ID  - MZM_1974_16_3_a0
ER  - 
%0 Journal Article
%A G. A. Mikhalin
%T Noneffectiveness of a~class of regular matrices
%J Matematičeskie zametki
%D 1974
%P 361-364
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a0/
%G ru
%F MZM_1974_16_3_a0
G. A. Mikhalin. Noneffectiveness of a~class of regular matrices. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 361-364. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a0/