When is the radical associated with a~module a~torsion?
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 41-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary $R$-module $M$ we consider the radical (in the sense of Maranda)$\mathfrak G_M, namely, the largest radical among all radicals $\mathfrak G$, such that$\mathfrak G(M)=0$. We determine necessary and sufficient on $M$ in order for the radical $\mathfrak G_M$ to be a~torsion. In particular,$\mathfrak G_M$ is a~torsion if and only if $M$ is a pseudo-injective module.
@article{MZM_1974_16_1_a4,
     author = {A. I. Kashu},
     title = {When is the radical associated with a~module a~torsion?},
     journal = {Matemati\v{c}eskie zametki},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a4/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - When is the radical associated with a~module a~torsion?
JO  - Matematičeskie zametki
PY  - 1974
SP  - 41
EP  - 48
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a4/
LA  - ru
ID  - MZM_1974_16_1_a4
ER  - 
%0 Journal Article
%A A. I. Kashu
%T When is the radical associated with a~module a~torsion?
%J Matematičeskie zametki
%D 1974
%P 41-48
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a4/
%G ru
%F MZM_1974_16_1_a4
A. I. Kashu. When is the radical associated with a~module a~torsion?. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a4/