Some imbedding theorems for block designs balanced with respect to pairs
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 173-184
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove imbedding theorems for block designs balanced with respect to pairs, and with the aid of these theorems we establish the existence of $(v,k,\lambda)$-resolvable BIB block designs with parameters $v,k,\lambda$ such that $\lambda=k-1$ [and also such that $\lambda=(k-l)/2$ if $k$ is odd], $k\mid(p-1)$ for each prime divisor $p$ of the number $v/k$; we also establish an imbedding theorem for Kirkman triple systems.
@article{MZM_1974_16_1_a19,
author = {B. T. Rumov},
title = {Some imbedding theorems for block designs balanced with respect to pairs},
journal = {Matemati\v{c}eskie zametki},
pages = {173--184},
year = {1974},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a19/}
}
B. T. Rumov. Some imbedding theorems for block designs balanced with respect to pairs. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 173-184. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a19/