Radicals of Jordan rings connected with alternative rings
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 135-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

Subject to a certain restriction on the additive group of an alternative ring $A$, we prove that $R(A)=R(A^{(+)})$, where $A^{(+)}$ is a Jordan ring and $R$ is one of the following radicals: the Jacobson radical, the upper nil-radical, the locally nilpotent radical, or the lower nil-radical. For the proof of these relationships Herstein's well-known construction for associative rings is generalized to alternative rings.
@article{MZM_1974_16_1_a15,
     author = {A. M. Slin'ko},
     title = {Radicals of {Jordan} rings connected with alternative rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {135--140},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a15/}
}
TY  - JOUR
AU  - A. M. Slin'ko
TI  - Radicals of Jordan rings connected with alternative rings
JO  - Matematičeskie zametki
PY  - 1974
SP  - 135
EP  - 140
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a15/
LA  - ru
ID  - MZM_1974_16_1_a15
ER  - 
%0 Journal Article
%A A. M. Slin'ko
%T Radicals of Jordan rings connected with alternative rings
%J Matematičeskie zametki
%D 1974
%P 135-140
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a15/
%G ru
%F MZM_1974_16_1_a15
A. M. Slin'ko. Radicals of Jordan rings connected with alternative rings. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a15/