Maximal subgroups of symmetric groups defined on projective spaces over finite fields
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 91-100
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $P\Gamma L(n, q)$ be a complete projective group of semilinear transformations of the projective space $P(n--1,q)$ of projective degree $n--l$ over a finite field of $q$ elements; we consider the group in its natural 2-transitive representation as a subgroup of the symmetric group $S(P^*(n—1,q))$ on the set $P^*(n-1,q)=P(n-1,q)\setminus\{\overline0\}$. In the present note we show that for arbitrary $n$ satisfying the inequality $n>4\frac{q^n-1}{q^{n-1}-1}$ [in particular, for $n>4(q+1)$] and for an arbitrary substitution $g\in S(P^*(n-1,q))\setminus P\Gamma L(n,q)$ the group $\langle P\Gamma L(n,q),g\rangle$ contains the alternating group $A(P^*(n-1,q))$. For $q=2,3$ this result is extended to all $n\ge3$.
@article{MZM_1974_16_1_a10,
author = {B. A. Pogorelov},
title = {Maximal subgroups of symmetric groups defined on projective spaces over finite fields},
journal = {Matemati\v{c}eskie zametki},
pages = {91--100},
year = {1974},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a10/}
}
B. A. Pogorelov. Maximal subgroups of symmetric groups defined on projective spaces over finite fields. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 91-100. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a10/