Maximal subgroups of symmetric groups defined on projective spaces over finite fields
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 91-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P\Gamma L(n, q)$ be a complete projective group of semilinear transformations of the projective space $P(n--1,q)$ of projective degree $n--l$ over a finite field of $q$ elements; we consider the group in its natural 2-transitive representation as a subgroup of the symmetric group $S(P^*(n—1,q))$ on the set $P^*(n-1,q)=P(n-1,q)\setminus\{\overline0\}$. In the present note we show that for arbitrary $n$ satisfying the inequality $n>4\frac{q^n-1}{q^{n-1}-1}$ [in particular, for $n>4(q+1)$] and for an arbitrary substitution $g\in S(P^*(n-1,q))\setminus P\Gamma L(n,q)$ the group $\langle P\Gamma L(n,q),g\rangle$ contains the alternating group $A(P^*(n-1,q))$. For $q=2,3$ this result is extended to all $n\ge3$.
@article{MZM_1974_16_1_a10,
     author = {B. A. Pogorelov},
     title = {Maximal subgroups of symmetric groups defined on projective spaces over finite fields},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a10/}
}
TY  - JOUR
AU  - B. A. Pogorelov
TI  - Maximal subgroups of symmetric groups defined on projective spaces over finite fields
JO  - Matematičeskie zametki
PY  - 1974
SP  - 91
EP  - 100
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a10/
LA  - ru
ID  - MZM_1974_16_1_a10
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%T Maximal subgroups of symmetric groups defined on projective spaces over finite fields
%J Matematičeskie zametki
%D 1974
%P 91-100
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a10/
%G ru
%F MZM_1974_16_1_a10
B. A. Pogorelov. Maximal subgroups of symmetric groups defined on projective spaces over finite fields. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 91-100. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a10/