On the number of steiner triple systems
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 769-774
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a new lower estimate for the number $N(n)$ of nonisomorphic Steiner triple systems of order $n$: $$ N(n)\ge n^{\frac{n^2}{12}-O\bigl(\frac{n^2}{\log n}\bigr)}. $$ This makes it possible to show that $\log N(n)$ is of order $n^2\log n$.
@article{MZM_1974_15_5_a13,
author = {V. E. Alekseev},
title = {On the number of steiner triple systems},
journal = {Matemati\v{c}eskie zametki},
pages = {769--774},
year = {1974},
volume = {15},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a13/}
}
V. E. Alekseev. On the number of steiner triple systems. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 769-774. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a13/