On the number of steiner triple systems
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 769-774.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new lower estimate for the number $N(n)$ of nonisomorphic Steiner triple systems of order $n$: $$ N(n)\ge n^{\frac{n^2}{12}-O\bigl(\frac{n^2}{\log n}\bigr)}. $$ This makes it possible to show that $\log N(n)$ is of order $n^2\log n$.
@article{MZM_1974_15_5_a13,
     author = {V. E. Alekseev},
     title = {On the number of steiner triple systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {769--774},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a13/}
}
TY  - JOUR
AU  - V. E. Alekseev
TI  - On the number of steiner triple systems
JO  - Matematičeskie zametki
PY  - 1974
SP  - 769
EP  - 774
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a13/
LA  - ru
ID  - MZM_1974_15_5_a13
ER  - 
%0 Journal Article
%A V. E. Alekseev
%T On the number of steiner triple systems
%J Matematičeskie zametki
%D 1974
%P 769-774
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a13/
%G ru
%F MZM_1974_15_5_a13
V. E. Alekseev. On the number of steiner triple systems. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 769-774. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a13/