Fourier sums for the Banach indicatrix
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 527-532.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a function $f(t)$, which is continuous on the interval $[0,1]$, is of bounded variation, $\min f(t)=0$, $\max f(t)=1$, for which the integral $$ I(x)=\frac1\pi\int_0^\infty\biggl[\int_0^1\cos y(f(t)-x)|df(t)|\biggr]\,dy $$ diverges for almost all $x\in[0,1]$. This result gives a negative answer to a question posed by Z. Ciesielski.
@article{MZM_1974_15_4_a2,
     author = {K. I. Oskolkov},
     title = {Fourier sums for the {Banach} indicatrix},
     journal = {Matemati\v{c}eskie zametki},
     pages = {527--532},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a2/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - Fourier sums for the Banach indicatrix
JO  - Matematičeskie zametki
PY  - 1974
SP  - 527
EP  - 532
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a2/
LA  - ru
ID  - MZM_1974_15_4_a2
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T Fourier sums for the Banach indicatrix
%J Matematičeskie zametki
%D 1974
%P 527-532
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a2/
%G ru
%F MZM_1974_15_4_a2
K. I. Oskolkov. Fourier sums for the Banach indicatrix. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 527-532. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a2/