Singularities of carleman type for subsystems of a~trigonometric system
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 515-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for arbitrary $\varepsilon>0$ there exists a sequence of positive integers $\{n_k\}$ such that a) the system $\{\cos n_kX,\sin n_kX\}$ is a basis with respect to the $C[-\pi,\pi]$ norm in the closure of its linear hull, and b) a continuous function $f(x)$ belonging to the closure of the linear hull of the system can be found such that its Fourier coefficients $a_n$ and $b_n$ satisfy the relation $$ \sum{n=1}^\infty|a_n|^{2-\varepsilon}+|b_n|^{2-\varepsilon}=\infty. $$
@article{MZM_1974_15_4_a0,
     author = {S. F. Lukomskii},
     title = {Singularities of carleman type for subsystems of a~trigonometric system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {515--520},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a0/}
}
TY  - JOUR
AU  - S. F. Lukomskii
TI  - Singularities of carleman type for subsystems of a~trigonometric system
JO  - Matematičeskie zametki
PY  - 1974
SP  - 515
EP  - 520
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a0/
LA  - ru
ID  - MZM_1974_15_4_a0
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%T Singularities of carleman type for subsystems of a~trigonometric system
%J Matematičeskie zametki
%D 1974
%P 515-520
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a0/
%G ru
%F MZM_1974_15_4_a0
S. F. Lukomskii. Singularities of carleman type for subsystems of a~trigonometric system. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 515-520. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a0/