Singularities of carleman type for subsystems of a~trigonometric system
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 515-520
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for arbitrary $\varepsilon>0$ there exists a sequence of positive integers $\{n_k\}$ such that a) the system $\{\cos n_kX,\sin n_kX\}$ is a basis with respect to the $C[-\pi,\pi]$ norm in the closure of its linear hull, and b) a continuous function $f(x)$ belonging to the closure of the linear hull of the system can be found such that its Fourier coefficients $a_n$ and $b_n$ satisfy the relation
$$
\sum{n=1}^\infty|a_n|^{2-\varepsilon}+|b_n|^{2-\varepsilon}=\infty.
$$
@article{MZM_1974_15_4_a0,
author = {S. F. Lukomskii},
title = {Singularities of carleman type for subsystems of a~trigonometric system},
journal = {Matemati\v{c}eskie zametki},
pages = {515--520},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a0/}
}
S. F. Lukomskii. Singularities of carleman type for subsystems of a~trigonometric system. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 515-520. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a0/