Smoothing by $L$-spline functions of many variables
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 371-379.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the problem of the smoothing of experimental data by cell-like $L$-spline functions of many variables from the point of view of the theory of such functions proposed by the author. Given values of a function and its derivatives up to some order are smoothed on a rectangular network of nodes. Existence and uniqueness of the solution are proved and equations are derived.
@article{MZM_1974_15_3_a2,
     author = {Yu. S. Zav'yalov},
     title = {Smoothing by $L$-spline functions of many variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {371--379},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a2/}
}
TY  - JOUR
AU  - Yu. S. Zav'yalov
TI  - Smoothing by $L$-spline functions of many variables
JO  - Matematičeskie zametki
PY  - 1974
SP  - 371
EP  - 379
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a2/
LA  - ru
ID  - MZM_1974_15_3_a2
ER  - 
%0 Journal Article
%A Yu. S. Zav'yalov
%T Smoothing by $L$-spline functions of many variables
%J Matematičeskie zametki
%D 1974
%P 371-379
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a2/
%G ru
%F MZM_1974_15_3_a2
Yu. S. Zav'yalov. Smoothing by $L$-spline functions of many variables. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 371-379. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a2/