Number of equivalence classes of weakly equivalent lattices
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 501-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two complete lattices, $M$ and $N$, lying in an algebra over the field of rational numbers, are said to be weakly left equivalent if $N=KM$ and $M=\overline KN$, where $K$ is a two-sided invertible lattice and $\overline K$ is the inverse for $K$. In this paper we prove that the number of equivalence classes of lattices contained in a weak equivalence class is finite.
@article{MZM_1974_15_3_a16,
     author = {I. A. Levina},
     title = {Number of equivalence classes of weakly equivalent lattices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {501--508},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a16/}
}
TY  - JOUR
AU  - I. A. Levina
TI  - Number of equivalence classes of weakly equivalent lattices
JO  - Matematičeskie zametki
PY  - 1974
SP  - 501
EP  - 508
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a16/
LA  - ru
ID  - MZM_1974_15_3_a16
ER  - 
%0 Journal Article
%A I. A. Levina
%T Number of equivalence classes of weakly equivalent lattices
%J Matematičeskie zametki
%D 1974
%P 501-508
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a16/
%G ru
%F MZM_1974_15_3_a16
I. A. Levina. Number of equivalence classes of weakly equivalent lattices. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 501-508. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a16/