Mean value theorem and a~maximum principle for Kolmogorov's equation
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 479-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an equation of the form $$ \frac{\partial u}{\partial t}-\sum_{ij=1}^n\alpha^{ij}\frac{\partial^2u}{\partial x^i\partial x^j}+\sum_{ij=1}^n\beta_j^ix^i\frac{\partial u}{\partial x^i}=0,\quad x\in R^n,\quad t\in R^1, $$ where $\alpha=(\alpha^{ij})$ is a constant nonnegative matrix and $\beta=(\beta^i_j)$ is a constant matrix, subject to certain conditions, we construct a fundamental solution, similar in its structure to the fundamental solution of the heat conduction equation; we prove a mean value theorem and show that $u(x_0,t_0)$ can be represented in the form of the mean value of $u(x,t)$ with a nonnegative density over a level surface of the fundamental solution of the adjoint equation passing through the point $(x_0,t_0)$; finally, we prove a parabolic maximum principle.
@article{MZM_1974_15_3_a14,
     author = {L. P. Kuptsov},
     title = {Mean value theorem and a~maximum principle for {Kolmogorov's} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {479--489},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a14/}
}
TY  - JOUR
AU  - L. P. Kuptsov
TI  - Mean value theorem and a~maximum principle for Kolmogorov's equation
JO  - Matematičeskie zametki
PY  - 1974
SP  - 479
EP  - 489
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a14/
LA  - ru
ID  - MZM_1974_15_3_a14
ER  - 
%0 Journal Article
%A L. P. Kuptsov
%T Mean value theorem and a~maximum principle for Kolmogorov's equation
%J Matematičeskie zametki
%D 1974
%P 479-489
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a14/
%G ru
%F MZM_1974_15_3_a14
L. P. Kuptsov. Mean value theorem and a~maximum principle for Kolmogorov's equation. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 479-489. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a14/