A boundary uniqueness theorem for holomorphic functions of several complex variables
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 205-212
Cet article a éte moissonné depuis la source Math-Net.Ru
If $D\subset C^n$ is a region with a smooth boundary and $M\subset\partial D$ is a smooth manifold such that for some point $p\in M$ the complex linear hull of the tangent plane $T_p(M)$ coincides with $C^n$, then for each function $f\in A(D)$ the condition $f\mid_m=0$ implies that $f\equiv0$ in $D$.
@article{MZM_1974_15_2_a3,
author = {S. I. Pinchuk},
title = {A~boundary uniqueness theorem for holomorphic functions of several complex variables},
journal = {Matemati\v{c}eskie zametki},
pages = {205--212},
year = {1974},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a3/}
}
S. I. Pinchuk. A boundary uniqueness theorem for holomorphic functions of several complex variables. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 205-212. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a3/