A~boundary uniqueness theorem for holomorphic functions of several complex variables
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 205-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $D\subset C^n$ is a region with a smooth boundary and $M\subset\partial D$ is a smooth manifold such that for some point $p\in M$ the complex linear hull of the tangent plane $T_p(M)$ coincides with $C^n$, then for each function $f\in A(D)$ the condition $f\mid_m=0$ implies that $f\equiv0$ in $D$.
@article{MZM_1974_15_2_a3,
     author = {S. I. Pinchuk},
     title = {A~boundary uniqueness theorem for holomorphic functions of several complex variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {205--212},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a3/}
}
TY  - JOUR
AU  - S. I. Pinchuk
TI  - A~boundary uniqueness theorem for holomorphic functions of several complex variables
JO  - Matematičeskie zametki
PY  - 1974
SP  - 205
EP  - 212
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a3/
LA  - ru
ID  - MZM_1974_15_2_a3
ER  - 
%0 Journal Article
%A S. I. Pinchuk
%T A~boundary uniqueness theorem for holomorphic functions of several complex variables
%J Matematičeskie zametki
%D 1974
%P 205-212
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a3/
%G ru
%F MZM_1974_15_2_a3
S. I. Pinchuk. A~boundary uniqueness theorem for holomorphic functions of several complex variables. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 205-212. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a3/