The three-lines theorem
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 45-53
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f(z)$ be an entire function represented by a Dirichlet series which is absolutely convergent in the finite plane and whose exponents $\lambda_k\ge0$; let $M(x)$ be the exact supremum of $|f(z)|$ on $\{z:\operatorname{Re}z=x\}$. If we assume that $F(x)=\ln M(x)$ has a continuous second derivative, the three-lines theorem asserts that $F''(x)\ge0$. In the paper, this theorem is supplemented by the assertion that for $x\to+\infty$ the upper limit of $F''(x)\ge0$ is larger than a positive constant which depends only on $\{\lambda_k\}$. In the case of positive coefficients of the series, the obtained bound cannot be improved.
@article{MZM_1974_15_1_a4,
author = {V. S. Boichuk and A. A. Gol'dberg},
title = {The three-lines theorem},
journal = {Matemati\v{c}eskie zametki},
pages = {45--53},
year = {1974},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a4/}
}
V. S. Boichuk; A. A. Gol'dberg. The three-lines theorem. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a4/