The three-lines theorem
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 45-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be an entire function represented by a Dirichlet series which is absolutely convergent in the finite plane and whose exponents $\lambda_k\ge0$; let $M(x)$ be the exact supremum of $|f(z)|$ on $\{z:\operatorname{Re}z=x\}$. If we assume that $F(x)=\ln M(x)$ has a continuous second derivative, the three-lines theorem asserts that $F''(x)\ge0$. In the paper, this theorem is supplemented by the assertion that for $x\to+\infty$ the upper limit of $F''(x)\ge0$ is larger than a positive constant which depends only on $\{\lambda_k\}$. In the case of positive coefficients of the series, the obtained bound cannot be improved.
@article{MZM_1974_15_1_a4,
     author = {V. S. Boichuk and A. A. Gol'dberg},
     title = {The three-lines theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a4/}
}
TY  - JOUR
AU  - V. S. Boichuk
AU  - A. A. Gol'dberg
TI  - The three-lines theorem
JO  - Matematičeskie zametki
PY  - 1974
SP  - 45
EP  - 53
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a4/
LA  - ru
ID  - MZM_1974_15_1_a4
ER  - 
%0 Journal Article
%A V. S. Boichuk
%A A. A. Gol'dberg
%T The three-lines theorem
%J Matematičeskie zametki
%D 1974
%P 45-53
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a4/
%G ru
%F MZM_1974_15_1_a4
V. S. Boichuk; A. A. Gol'dberg. The three-lines theorem. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a4/