Factorization of a~convolution-type operator
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 165-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three convolution-type equations are considered in the space of entire functions with topology ofd uniform convergence: \begin{gather*} M_{\mu_1}[f]=\int_Cf(z+t)d\mu_1=0\\ M_{\mu_2}[f]=\int_Cf(z+t)d\mu_2=0\\ M_\mu[f]=\int_Cf(z+t)d\mu=0 \end{gather*} with respective characteristic functions $L_1(\lambda)$, $L_2(\lambda)$, $L(\lambda)=L_1(\lambda)\cdot L_2(\lambda)$, $\operatorname{supp}\mu\Subset C$, $\operatorname{supp}\mu_1\Subset C$, $\operatorname{supp}\mu_2\Subset C$. The necessary and sufficient conditions are found that every solution $f(z)$ of the equation $M_\mu[f]=0$ can be written as a sum $f_1(z)+f_2(z)$, where $f_1(z)$ is the solution of the equation $M_{\mu_1}[f]=0$, $f_2(z)$ is the solution of the equation $M_{\mu_2}[f]=0$.
@article{MZM_1974_15_1_a17,
     author = {V. V. Napalkov},
     title = {Factorization of a~convolution-type operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {165--171},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a17/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - Factorization of a~convolution-type operator
JO  - Matematičeskie zametki
PY  - 1974
SP  - 165
EP  - 171
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a17/
LA  - ru
ID  - MZM_1974_15_1_a17
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T Factorization of a~convolution-type operator
%J Matematičeskie zametki
%D 1974
%P 165-171
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a17/
%G ru
%F MZM_1974_15_1_a17
V. V. Napalkov. Factorization of a~convolution-type operator. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 165-171. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a17/