Factorization of a~convolution-type operator
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 165-171
Voir la notice de l'article provenant de la source Math-Net.Ru
Three convolution-type equations are considered in the space of entire functions with topology ofd uniform convergence:
\begin{gather*}
M_{\mu_1}[f]=\int_Cf(z+t)d\mu_1=0\\
M_{\mu_2}[f]=\int_Cf(z+t)d\mu_2=0\\
M_\mu[f]=\int_Cf(z+t)d\mu=0
\end{gather*}
with respective characteristic functions $L_1(\lambda)$, $L_2(\lambda)$, $L(\lambda)=L_1(\lambda)\cdot L_2(\lambda)$, $\operatorname{supp}\mu\Subset C$, $\operatorname{supp}\mu_1\Subset C$, $\operatorname{supp}\mu_2\Subset C$. The necessary and sufficient conditions are found that every solution $f(z)$ of the equation $M_\mu[f]=0$ can be written as a sum $f_1(z)+f_2(z)$, where $f_1(z)$ is the solution of the equation $M_{\mu_1}[f]=0$, $f_2(z)$ is the solution of the equation $M_{\mu_2}[f]=0$.
@article{MZM_1974_15_1_a17,
author = {V. V. Napalkov},
title = {Factorization of a~convolution-type operator},
journal = {Matemati\v{c}eskie zametki},
pages = {165--171},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a17/}
}
V. V. Napalkov. Factorization of a~convolution-type operator. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 165-171. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a17/