The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that on the interval $[a,b]$ the nodes
$$a=x_o\dots{m+1}=b$$
are given and the functions $u_0(t)=\omega_0(t)$,
$$u_i(t)=\omega_0(t)=\int_0^t\omega_1(\xi_1)\,d\xi_1\dots\int_a^{\xi_{i-1}}\omega_i(\xi_i)\,d\xi_i,\quad\xi_0=t\quad(i=1,2,\dots,n),$$
where the functions $\omega_i(t)>0$ have continuous $(n-1)$-th derivatives ($i=1,2,\dots,n$). $S_{n,m}$ will designate the subspace of functions that have continuous $(n-1)$-st derivatives on $[a,b]$ and coincide on each of the intervals $[x_j,x_{j+1}]$ ($j=0,1,\dots,m$) with some polynomial from the system $\{u_i(t)\}_{i=0}^n$.
THEOREM. {\it For every continuous function on $[a,b]$ there exists in $S_{n,m}$ a unique element of best mean approximation.}
@article{MZM_1974_15_1_a0,
author = {P. V. Galkin},
title = {The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes},
journal = {Matemati\v{c}eskie zametki},
pages = {3--14},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a0/}
}
TY - JOUR AU - P. V. Galkin TI - The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes JO - Matematičeskie zametki PY - 1974 SP - 3 EP - 14 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a0/ LA - ru ID - MZM_1974_15_1_a0 ER -
P. V. Galkin. The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a0/