The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that on the interval $[a,b]$ the nodes $$a=x_o\dots{m+1}=b$$ are given and the functions $u_0(t)=\omega_0(t)$, $$u_i(t)=\omega_0(t)=\int_0^t\omega_1(\xi_1)\,d\xi_1\dots\int_a^{\xi_{i-1}}\omega_i(\xi_i)\,d\xi_i,\quad\xi_0=t\quad(i=1,2,\dots,n),$$ where the functions $\omega_i(t)>0$ have continuous $(n-1)$-th derivatives ($i=1,2,\dots,n$). $S_{n,m}$ will designate the subspace of functions that have continuous $(n-1)$-st derivatives on $[a,b]$ and coincide on each of the intervals $[x_j,x_{j+1}]$ ($j=0,1,\dots,m$) with some polynomial from the system $\{u_i(t)\}_{i=0}^n$. THEOREM. {\it For every continuous function on $[a,b]$ there exists in $S_{n,m}$ a unique element of best mean approximation.}
@article{MZM_1974_15_1_a0,
     author = {P. V. Galkin},
     title = {The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a0/}
}
TY  - JOUR
AU  - P. V. Galkin
TI  - The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes
JO  - Matematičeskie zametki
PY  - 1974
SP  - 3
EP  - 14
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a0/
LA  - ru
ID  - MZM_1974_15_1_a0
ER  - 
%0 Journal Article
%A P. V. Galkin
%T The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes
%J Matematičeskie zametki
%D 1974
%P 3-14
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a0/
%G ru
%F MZM_1974_15_1_a0
P. V. Galkin. The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a0/