Best mean-square approximation of functions of $m$ variables
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 913-924
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E_\sigma(f;l_q)_{L_2(R_m)}$ be the best mean-square approximation of a function $f(x)\in L_2(R_m)$ ($m=1,2,\dots$) by integral functions of the exponential spherical type (in the sense of the $l_q$, $0$) with $\sigma>0$, $\omega(f;\pi/\sigma;l_p)_{L_2(R_m)}$ is the spherical (in the sense of the metric $l_p$, $0$) continuity module of the function $f(x)\in L_2(R_m)$.
For the quantity $C_\sigma(m;q;p)=\sup\limits_{f\in L_2}\{E_\sigma(f;l_q):\omega(f;\pi/\sigma;l_p)\}$ two-sided estimates are obtained which are uniform in the parameters $m$, $q$, and $p$. Similar results are also obtained in the case of $q=p=2$ for classes of functions $W_2^\rho(R_m)$ ($\rho=1,2,\dots$).
@article{MZM_1973_14_6_a16,
author = {V. Yu. Popov},
title = {Best mean-square approximation of functions of $m$ variables},
journal = {Matemati\v{c}eskie zametki},
pages = {913--924},
publisher = {mathdoc},
volume = {14},
number = {6},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a16/}
}
V. Yu. Popov. Best mean-square approximation of functions of $m$ variables. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 913-924. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a16/