Boundary-value problem of Сarleman with a noninvolutory shift
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 677-685
Voir la notice de l'article provenant de la source Math-Net.Ru
By a conformal pasting method we reduce the Carleman boundary-value problem
$$
\Phi^+[\alpha(t)]=G(t)\Phi^+(t)+g(t)
$$
with a nonconvergent shift $\alpha(t)$ ($\alpha[\alpha(t)]\not\equiv t$) to the problem
of finding all analytic functions which are simultaneously the solutions of two problems
on an open contour: the Riemann problem and the Hasemann problem. Using this reduction,
we obtain a theorem concerning the solvability of the stated problem.
@article{MZM_1973_14_5_a7,
author = {A. V. Aizenshtat and V. A. Chernetskii},
title = {Boundary-value problem of {{\CYRS}arleman} with a noninvolutory shift},
journal = {Matemati\v{c}eskie zametki},
pages = {677--685},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a7/}
}
A. V. Aizenshtat; V. A. Chernetskii. Boundary-value problem of Сarleman with a noninvolutory shift. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 677-685. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a7/