Boundary-value problem of Сarleman with a noninvolutory shift
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 677-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

By a conformal pasting method we reduce the Carleman boundary-value problem $$ \Phi^+[\alpha(t)]=G(t)\Phi^+(t)+g(t) $$ with a nonconvergent shift $\alpha(t)$ ($\alpha[\alpha(t)]\not\equiv t$) to the problem of finding all analytic functions which are simultaneously the solutions of two problems on an open contour: the Riemann problem and the Hasemann problem. Using this reduction, we obtain a theorem concerning the solvability of the stated problem.
@article{MZM_1973_14_5_a7,
     author = {A. V. Aizenshtat and V. A. Chernetskii},
     title = {Boundary-value problem of {{\CYRS}arleman} with a noninvolutory shift},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--685},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a7/}
}
TY  - JOUR
AU  - A. V. Aizenshtat
AU  - V. A. Chernetskii
TI  - Boundary-value problem of Сarleman with a noninvolutory shift
JO  - Matematičeskie zametki
PY  - 1973
SP  - 677
EP  - 685
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a7/
LA  - ru
ID  - MZM_1973_14_5_a7
ER  - 
%0 Journal Article
%A A. V. Aizenshtat
%A V. A. Chernetskii
%T Boundary-value problem of Сarleman with a noninvolutory shift
%J Matematičeskie zametki
%D 1973
%P 677-685
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a7/
%G ru
%F MZM_1973_14_5_a7
A. V. Aizenshtat; V. A. Chernetskii. Boundary-value problem of Сarleman with a noninvolutory shift. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 677-685. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a7/