Nilpotent shifts on manifolds
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 703-712
Voir la notice de l'article provenant de la source Math-Net.Ru
On the lattice of manifolds of all algebras $L$ we study the operator of nilpotent closure $J:\alpha\to\alpha+\mathfrak{R}$, where $\mathfrak{R}$ is a nilpotent manifold of $\Omega$-algebras. With a given system of identities $\Sigma$ defining $\alpha$, we construct a system $\Sigma^*$, giving the manifold $\alpha+\mathfrak{R}$. It is proved that if $\alpha$ does not contain $\mathfrak{R}$, then the lattice of submanifolds of $\alpha+\mathfrak{R}$ is the double of the lattice of submanifolds of $\alpha$. We describe the free and subdirect indecomposable manifolds of algebras $\alpha+\mathfrak{R}$. Let $B\in\alpha+\mathfrak{R}$ and $A$ be a dense retract of $B$. We denote by $\theta(B)$ the lattice of congruences on $B$. The theorem is proved: $\theta(B)$ is a complemented lattice if and only if $\theta(A)$ is a complemented lattice.
@article{MZM_1973_14_5_a10,
author = {I. I. Mel'nik},
title = {Nilpotent shifts on manifolds},
journal = {Matemati\v{c}eskie zametki},
pages = {703--712},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a10/}
}
I. I. Mel'nik. Nilpotent shifts on manifolds. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 703-712. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a10/