Nilpotent shifts on manifolds
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 703-712.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the lattice of manifolds of all algebras $L$ we study the operator of nilpotent closure $J:\alpha\to\alpha+\mathfrak{R}$, where $\mathfrak{R}$ is a nilpotent manifold of $\Omega$-algebras. With a given system of identities $\Sigma$ defining $\alpha$, we construct a system $\Sigma^*$, giving the manifold $\alpha+\mathfrak{R}$. It is proved that if $\alpha$ does not contain $\mathfrak{R}$, then the lattice of submanifolds of $\alpha+\mathfrak{R}$ is the double of the lattice of submanifolds of $\alpha$. We describe the free and subdirect indecomposable manifolds of algebras $\alpha+\mathfrak{R}$. Let $B\in\alpha+\mathfrak{R}$ and $A$ be a dense retract of $B$. We denote by $\theta(B)$ the lattice of congruences on $B$. The theorem is proved: $\theta(B)$ is a complemented lattice if and only if $\theta(A)$ is a complemented lattice.
@article{MZM_1973_14_5_a10,
     author = {I. I. Mel'nik},
     title = {Nilpotent shifts on manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {703--712},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a10/}
}
TY  - JOUR
AU  - I. I. Mel'nik
TI  - Nilpotent shifts on manifolds
JO  - Matematičeskie zametki
PY  - 1973
SP  - 703
EP  - 712
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a10/
LA  - ru
ID  - MZM_1973_14_5_a10
ER  - 
%0 Journal Article
%A I. I. Mel'nik
%T Nilpotent shifts on manifolds
%J Matematičeskie zametki
%D 1973
%P 703-712
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a10/
%G ru
%F MZM_1973_14_5_a10
I. I. Mel'nik. Nilpotent shifts on manifolds. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 703-712. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a10/