Separation properties for Sturm--Liouville operators
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 349-359
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $q(x)$ be a positive function given on the interval $I$ of the real axis; let $P$ be the minimal operator generated in $L_2(0,+\infty)$ by the differential expression $P[\cdot]=-\frac{d^2}{dx^2}+q(x)$; let $Q$ be the operator of multiplication by the function $q(x)$.
If $D_{P^*}\subset D_Q$, then $P[\cdot]$ is said to be separated. In this note the separation of $P[\cdot]$ is proved for some growth regularity conditions on the fonction $q(x)$, without assuming anything on its smoothness. One proves that if $D_{P^*}\subset D_S$, where $S$ is the multiplication operator by the function $s(x)$, satisfying some growth regularity condition, then $D_Q\subset D_S$.
@article{MZM_1973_14_3_a4,
author = {K. Kh. Boimatov},
title = {Separation properties for {Sturm--Liouville} operators},
journal = {Matemati\v{c}eskie zametki},
pages = {349--359},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a4/}
}
K. Kh. Boimatov. Separation properties for Sturm--Liouville operators. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 349-359. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a4/