On the dimension of graded algebras
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 209-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

To each graded algebra $R$ with a finite number of generators we associate the series $T(R,z)=\sum d_nz^n$, where $d_n$ is the dimension of the homogeneous component of $R$. It is proved that if the dimensions $d_n$ have polynomial growth, then the Krull dimension of $R$ cannot exceed the order of the pole of the series $T(R,z)$ for $z=1$ by more than 1.
@article{MZM_1973_14_2_a5,
     author = {V. E. Govorov},
     title = {On the dimension of graded algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {209--216},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a5/}
}
TY  - JOUR
AU  - V. E. Govorov
TI  - On the dimension of graded algebras
JO  - Matematičeskie zametki
PY  - 1973
SP  - 209
EP  - 216
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a5/
LA  - ru
ID  - MZM_1973_14_2_a5
ER  - 
%0 Journal Article
%A V. E. Govorov
%T On the dimension of graded algebras
%J Matematičeskie zametki
%D 1973
%P 209-216
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a5/
%G ru
%F MZM_1973_14_2_a5
V. E. Govorov. On the dimension of graded algebras. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 209-216. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a5/