Asymptote of some entire exponential-type functions with zeros on spirals
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 173-184
Voir la notice de l'article provenant de la source Math-Net.Ru
The author considers the Weierstrass canonical product of the first kind $\Pi(z)$, all roots of which lie on a spiral with equation in polar coordinates $(r,\Phi):\Phi=\ln\ln r$. With certain additional conditions on the roots, the asymptote is found for the function $\ln\{e^{Az}\Pi(z)\}$ ($A$ is some constant) in the complex plane cut along the spiral $\Phi=\ln\ln r$. The result is applied to the question of the sufficient condition for the satisfaction of an inequality for exponential-type functions, used in questions of the Dirichlet-series representation of analytic functions.
@article{MZM_1973_14_2_a1,
author = {S. K. Balashov},
title = {Asymptote of some entire exponential-type functions with zeros on spirals},
journal = {Matemati\v{c}eskie zametki},
pages = {173--184},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a1/}
}
S. K. Balashov. Asymptote of some entire exponential-type functions with zeros on spirals. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 173-184. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a1/