Asymptote of some entire exponential-type functions with zeros on spirals
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 173-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers the Weierstrass canonical product of the first kind $\Pi(z)$, all roots of which lie on a spiral with equation in polar coordinates $(r,\Phi):\Phi=\ln\ln r$. With certain additional conditions on the roots, the asymptote is found for the function $\ln\{e^{Az}\Pi(z)\}$ ($A$ is some constant) in the complex plane cut along the spiral $\Phi=\ln\ln r$. The result is applied to the question of the sufficient condition for the satisfaction of an inequality for exponential-type functions, used in questions of the Dirichlet-series representation of analytic functions.
@article{MZM_1973_14_2_a1,
     author = {S. K. Balashov},
     title = {Asymptote of some entire exponential-type functions with zeros on spirals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {173--184},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a1/}
}
TY  - JOUR
AU  - S. K. Balashov
TI  - Asymptote of some entire exponential-type functions with zeros on spirals
JO  - Matematičeskie zametki
PY  - 1973
SP  - 173
EP  - 184
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a1/
LA  - ru
ID  - MZM_1973_14_2_a1
ER  - 
%0 Journal Article
%A S. K. Balashov
%T Asymptote of some entire exponential-type functions with zeros on spirals
%J Matematičeskie zametki
%D 1973
%P 173-184
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a1/
%G ru
%F MZM_1973_14_2_a1
S. K. Balashov. Asymptote of some entire exponential-type functions with zeros on spirals. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 173-184. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a1/