Estimate of a sum of Legendre symbols of polynomials of even degree
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 73-81
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $n\ge4$ be even, $p>\frac{n^2-2n}2$ be simple odd, and $f(x)=a_0+a_1x+\dots+a_nx^n$ be a polynomial with integral coefficients that are not quadratic over the residue field modulo $p$, $(a_n,p)=1$. The following inequality is proved: $$ \biggl|\sum_{x=1}^p\biggl(\frac{f(x)}p\biggr)\biggr|\le(n-2)\sqrt{p+1-\frac{n(n-4)}4}+1. $$
@article{MZM_1973_14_1_a9,
author = {D. A. Mit'kin},
title = {Estimate of a~sum of {Legendre} symbols of polynomials of even degree},
journal = {Matemati\v{c}eskie zametki},
pages = {73--81},
year = {1973},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a9/}
}
D. A. Mit'kin. Estimate of a sum of Legendre symbols of polynomials of even degree. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 73-81. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a9/