Exact constants of approximation for differentiable periodic functions
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

For all odd $r$ we construct a linear operator $B_{n,r}(f)$ which maps the set of $2\pi$-periodic functions $f(t)\in X^{(r)}$ ($X^{(r)}=X^{(r)}$ or $L_1^{(r)}$) into a set of trigonometric polynomials of order not higher than $n-1$ such that $$ \sup_{f\in X^{(r)}}\frac{n^rE_n(f)_X}{\omega(f^{(r)},\pi/n)_X}=\sup_{f\in X^{(r)}}\frac{n^r\|f-B_{n,r}(f)\|_X}{\omega(f^{(r)},\pi/n)_X}=\frac{K_r}2, $$ where $X$ is the $C$ or $L_1$ metric, $E_n(f)_X$ and $\omega(f,\delta)_X$ are the best approximation by means of trigonometric polynomials of order not higher than $n-1$ and the modulus of continuity of the function $f$ in the $X$ metric, respectively; $K_r$ are the known Favard constants.
@article{MZM_1973_14_1_a2,
     author = {A. A. Ligun},
     title = {Exact constants of approximation for differentiable periodic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a2/}
}
TY  - JOUR
AU  - A. A. Ligun
TI  - Exact constants of approximation for differentiable periodic functions
JO  - Matematičeskie zametki
PY  - 1973
SP  - 21
EP  - 30
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a2/
LA  - ru
ID  - MZM_1973_14_1_a2
ER  - 
%0 Journal Article
%A A. A. Ligun
%T Exact constants of approximation for differentiable periodic functions
%J Matematičeskie zametki
%D 1973
%P 21-30
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a2/
%G ru
%F MZM_1973_14_1_a2
A. A. Ligun. Exact constants of approximation for differentiable periodic functions. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a2/