Exact constants of approximation for differentiable periodic functions
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 21-30
Voir la notice de l'article provenant de la source Math-Net.Ru
For all odd $r$ we construct a linear operator $B_{n,r}(f)$ which maps the set of $2\pi$-periodic functions $f(t)\in X^{(r)}$ ($X^{(r)}=X^{(r)}$ or $L_1^{(r)}$) into a set of trigonometric polynomials of order not higher than $n-1$ such that
$$
\sup_{f\in X^{(r)}}\frac{n^rE_n(f)_X}{\omega(f^{(r)},\pi/n)_X}=\sup_{f\in X^{(r)}}\frac{n^r\|f-B_{n,r}(f)\|_X}{\omega(f^{(r)},\pi/n)_X}=\frac{K_r}2,
$$
where $X$ is the $C$ or $L_1$ metric, $E_n(f)_X$ and $\omega(f,\delta)_X$ are the best approximation by means of trigonometric polynomials of order not higher than $n-1$ and the modulus of continuity of the function $f$ in the $X$ metric, respectively; $K_r$ are the known Favard constants.
@article{MZM_1973_14_1_a2,
author = {A. A. Ligun},
title = {Exact constants of approximation for differentiable periodic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {21--30},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a2/}
}
A. A. Ligun. Exact constants of approximation for differentiable periodic functions. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a2/