Asymptotic expansions of solutions of equations with a~deviating argument in Banach spaces
Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 829-838.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the equation $$Lu=\frac1i\frac{du}{dt}-\sum_{j=0}^mA_ju(t-h_j^0-h_j^1(t))=f(t),$$ where $h_0^0=0$, $h_0^1\equiv0$, $h_j^1(t)$, $j=1,\dots,m$ are nonnegative continuously differentiable functions in $[0,\infty)$, $A_j$ are bounded linear operators, under conditions on the resolvent and on the right hand side $f(t)$, we have obtained an asymptotic formula for any solution $u(t)$ from $L_2$ in terms of the exponential solutions $u_k(t)$, $k=1,\dots,n$, of the equation $$\frac1i\frac{du}{dt}-A_0u-\sum_{j=1}^mA_ju(t-h_j^0)=0,$$ connected with the poles $\lambda_k$, $1,\dots,n$, of the resolvent $R_\lambda$ in a certain strip.
@article{MZM_1973_13_6_a4,
     author = {R. G. Aliev},
     title = {Asymptotic expansions of solutions of equations with a~deviating argument in {Banach} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {829--838},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a4/}
}
TY  - JOUR
AU  - R. G. Aliev
TI  - Asymptotic expansions of solutions of equations with a~deviating argument in Banach spaces
JO  - Matematičeskie zametki
PY  - 1973
SP  - 829
EP  - 838
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a4/
LA  - ru
ID  - MZM_1973_13_6_a4
ER  - 
%0 Journal Article
%A R. G. Aliev
%T Asymptotic expansions of solutions of equations with a~deviating argument in Banach spaces
%J Matematičeskie zametki
%D 1973
%P 829-838
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a4/
%G ru
%F MZM_1973_13_6_a4
R. G. Aliev. Asymptotic expansions of solutions of equations with a~deviating argument in Banach spaces. Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 829-838. http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a4/