Asymptotic expansions of solutions of equations with a deviating argument in Banach spaces
Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 829-838
Cet article a éte moissonné depuis la source Math-Net.Ru
For the equation $$Lu=\frac1i\frac{du}{dt}-\sum_{j=0}^mA_ju(t-h_j^0-h_j^1(t))=f(t),$$ where $h_0^0=0$, $h_0^1\equiv0$, $h_j^1(t)$, $j=1,\dots,m$ are nonnegative continuously differentiable functions in $[0,\infty)$, $A_j$ are bounded linear operators, under conditions on the resolvent and on the right hand side $f(t)$, we have obtained an asymptotic formula for any solution $u(t)$ from $L_2$ in terms of the exponential solutions $u_k(t)$, $k=1,\dots,n$, of the equation $$\frac1i\frac{du}{dt}-A_0u-\sum_{j=1}^mA_ju(t-h_j^0)=0,$$ connected with the poles $\lambda_k$, $1,\dots,n$, of the resolvent $R_\lambda$ in a certain strip.
@article{MZM_1973_13_6_a4,
author = {R. G. Aliev},
title = {Asymptotic expansions of solutions of equations with a~deviating argument in {Banach} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {829--838},
year = {1973},
volume = {13},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a4/}
}
R. G. Aliev. Asymptotic expansions of solutions of equations with a deviating argument in Banach spaces. Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 829-838. http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a4/