The approximation of functions of many variables by their F\'ej\'er sums
Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 817-828
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct elliptic Féjér polynomials $K_n(x)$ of $m$ variables. We prove some of their properties: a) the Féjér polynomials are positive on the $m$-dimensional torus $T^m$, $K_n(x)\ge0$, b) $\min\limits_{x\in T^m}K_n(x)=O(n^{-1})$, as $n\to\infty$, c) we calculate their norms in the spaces $L[T^m]$ and $C[T^m]$. We estimate the deviation of the Féjér sum $\sigma_n(x,f)$ from the function $f(x)$. For the space $C[T^m]$:
$$
\sup_{f\in K\operatorname{Lip}\{\alpha,C[T^m]\}}\|f(x)-\sigma_n(x,f)\|_{C[T^m]}=
\begin{cases}
c_{\alpha,m}n^{-\alpha}+O(n^{-1}),0\alpha1,\\c_{1,m}n^{-1}\ln n+O(n^{-1}),\alpha=1,
\end{cases}
$$
where $c_{\alpha,m}$ , $c_{1,m}$ are constants.
@article{MZM_1973_13_6_a3,
author = {V. A. Yudin},
title = {The approximation of functions of many variables by their {F\'ej\'er} sums},
journal = {Matemati\v{c}eskie zametki},
pages = {817--828},
publisher = {mathdoc},
volume = {13},
number = {6},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a3/}
}
V. A. Yudin. The approximation of functions of many variables by their F\'ej\'er sums. Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 817-828. http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a3/